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1. Introduction

Why is simulation an important component of analysis for scientists? Simulation
is the imitation of a real-world process or system. The “joy of simulation” is that one
does not need to own or rent a Boeing 777 or Airbus A380 to fly them! Simulation
games are fun too and one gains valuable experience at the same time. Experience
and insight are gained by simulating the valuation of financial products, constructing
portfolios and testing trading rules (McLeish, 2005). Through simulation work is
transferred to the computer. Models can be handled that involve greater complexity
and fewer assumptions, and a more faithful representation of the real world is possible.

Scientists investigate the world around us by building models and analysing those.
These models usually take the form of differential equations that have to be solved
to obtain physical answers. They usually start with a very simplistic model and try
to solve it analytically or algebraically. This inevitably means they have to make
a lot of simplifying assumptions. As they start to understand the dynamics of this
“toy” model, they add more complexity to make it more representative of the real
world. This is exactly the route the evolution of the Black-Scholes option model took.
Black, Scholes and Merton made a lot of simplifying assumptions that enabled them
to solve this differential equation exactly. This model is, however, far from the truth
and as some of these assumptions are relaxed, one finds that the model cannot be
solved analytically anymore. This should not discourage anyone because simulation
techniques are usually great “complex problem solvers.”

Monte Carlo simulation has become an essential tool in the pricing of derivative
securities and the management of risk. Most problems where there is significant
uncertainty, can be solved using Monte Carlo techniques. Monte Carlo methods
are techniques utilising random numbers and probability to solve problems. The
analysis is based on artificially recreating a chance process, running it many times
and directly observing the results. Glassermann (2004) states it is thus based on the
analogy between probability and volume.

Monte Carlo methods are attractive in evaluating integrals in high dimensions
Glassermann (2004). What does this have to do with financial engineering? The
foundation of the theory of derivative pricing is the random walk of asset prices. This
is known as the Black-Scholes theory and leads to the Black-Scholes parabolic partial
differential equation (PDE). According to the Feynman-Kac theorem, the solution to
this PDE can be represented by an expected value — valuing derivatives is reduced
to computing expectations. Monte Carlo simulation is widely used in statistics in
calculating an expected value of a particular function. This thus found its way into
finance where all options are always the expected value of certain functions (Jäckel,
2002). If we were to write the relevant expectation as an integral, we would find that
its dimension is large or infinite. This is precisely the setting in which Monte Carlo
methods become attractive (Glassermann, 2004).

Weber (2011) states that the Monte Carlo method is widely used in the financial
markets as a valuation tool. It is used with path-dependent options and in models
with more than one state variable. It is sometimes preferred to partial differential
equation (PDE) or tree methods, even in situations where these methods could work
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well — simply because its generality and its robustness in contexts where a portfolio
of options is being valued.

In this paper, we consider the Monte Carlo approach to value a new range of
listed exotic products called Can-Do options — this product range was launched by
the Johannesburg Stock Exchange (JSE) on 8 January 2007. Can-Do options are
similar to CBOE’s Flex option range of products. It started out where clients wanted
to have the ability to customise key contract terms like the expiry date. However,
the suite of products quickly grew to include exotic options and structured products1.
Kotzé & Oosthuizen (2013) discuss and explain the local volatility pricing of exotic
Can-Do options like Barrier options, as well as the methodologies used to determine
their initial margins. Local volatility models have been in use since the 1980s although
these were not known by the name “local volatility.” The mathematical framework for
local volatility was first formulated by Dupire (1994). At the same time, Derman &
Kani (1994) and Rubinstein (1994) solved this problem numerically by implementing
binomial trees. These methods have subsequently been improved by many other
researchers (Andersen & Andreasen, 2000; Lagnado & Osher, 1997). It has since
been realised that Dupire’s framework is an extension of research done by Gyöngy
(1986).

Many exotic options, like Barrier options, have Black-Scholes type closed form
valuation formulas (Rubinstein & Reiner, 1991; Haug, 2007; Bouzoubaa & Osserein,
2010). However, it is also known that these formulas do not lead to market related
and realistic prices and hedge ratios. This is due to the fact that these formulas
use a fixed volatility. However, such option are path-dependent meaning that the
actual path the stock takes to get to the expiry value on the expiry date, actually
matters. To price them correctly one should either use stochastic volatility models or
local volatility models. The choice here is to use either finite difference techniques or
Monte Carlo simulation. This note will focus on Monte Carlo techniques.

The layout of this paper is as follows: In section 2 we give some history on
the origins of Monte Carlo simulation and section 3 gives a brief overview of exotic
options. In section 4 we bring local volatility into the Black-Scholes framework and
we discretise the Black-Scholes SDE. Section 5 is crucial where we show how to use
Monte Carlo simulation when pricing options. Section 6 discusses Dupire’s local
volatility mapping and in section 7 we use Dupire and price a single barrier option.
We conclude in section 8.

Note that there are a few Appendices where we elaborate on some of the theory
described in this paper. Appendix A shows why Monte Carlo simulation can be
used when pricing options and we show how to discretise the Black-Scholes stochastic
differential equation. Appendices B and C discusses the important issues of pseudo-
random numbers and the convergence of Monte Carlo simulation. Appendix D gives
an overview of the deterministic volatility function used to generate the volatility
surface for ALSI options. In Appendix E we discuss the closed-form pricing formulas

1http://www.jse.co.za/Products/Equity-Derivatives-Market/

Equity-Derivatives-Product-Detail/Can-Do_Futures_and_Options.aspx
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of single barrier options.

2. A bit of History

The ‘Monte Carlo’ method was developed by the physicists and mathematicians
working on the Manhattan Project2 during the second world war. The main charac-
ter was Stanilaw Ulam. Ulam and Edward Teller developed the first thermonuclear
weapon also known as the hydrogen bomb or H-bomb. Ulam was intensely interested
in random processes. He relaxed by playing solitaire and poker. The name ‘Monte
Carlo’ was coined by Nicholas Metropolis during 1947 because Ulam had often men-
tioned his uncle, Michal Ulam, “who just had to go to Monte Carlo” to gamble.

It all started in October 1943 when Ulam received an invitation to join the Man-
hattan Project at the secret Los Alamos Laboratory in New Mexico. His extensive
mathematical background made him aware that statistical sampling techniques had
fallen into desuetude because of the length and tediousness of the calculations. It is
believed that the first real applicaion of the ‘statistical sampling method’ was under-
taken by Enrico Fermi in the 1930s. Due to the computational issues, this method
did not really take off.

The second world war brought much needed progress though. Both the British
and Americans developed electronic computing machines. In the USA the ENIAC
(Electronic Numerical Integrator And Computer) was developed at the University of
Pennsylvania in Philadelphia during 1943. The primary function for which ENIAC
was designed was the calculation of tables used in aiming artillery. In the United
Kingdom, the “Colossus” computer was built on the theoretical framework set by
Turing (1936). This machine was built at Bletchley Park in 1944 to enable the
cracking of German Enigma codes. The ENIAC was somewhat similar to the earlier
Colossus, but considerably larger and more flexible (Istrail & Marcus, 2013).

These earliest large-scale electronic digital computers, the British Colossus and the
American ENIAC, did not store programs in memory. To set up these computers for a
fresh task, it was necessary to modify some of the machine’s wiring, re-routing cables
by hand and setting switches. The basic principle of the modern computer — the idea
of controlling the machine’s operations by means of a program of coded instructions
stored in the computer’s memory — was conceived by Alan Turing (Dyson, 2012).

But, Los Alamos had access to the ENIAC. Access to this toy convinced Ulam that
Fermi’s statistical techniques should be resuscitated, and he discussed this idea with
John von Neumann — a principle member of the Manhattan Project3. This triggered
the spark that led to the Monte Carlo method. One of the first problems solved on the
ENIAC in 1946 was a computational model of a thermonuclear reaction4. Metropolis

2http://en.wikipedia.org/wiki/Manhattan_Project
3http://library.lanl.gov/cgi-bin/getfile?00326866.pdf
4A thermonuclear reaction or nuclear fusion is the fusion of two light atomic nuclei into a single

heavier nucleus by a collision of the two interacting particles at extremely high temperatures, with
the consequent release of a relatively large amount of energy. This reaction is responsible for the
energy produced in the sun.
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& Ulam (1949) published the first unclassified paper on the Monte Carlo method in
1949.

Los Alamos got its own computer early in 1952. It was called the MANIAC (Math-
ematical Analyzer, Numerical Integrator, and Computer or Mathematical Analyzer,
Numerator, Integrator, and Computer). Enrico Fermi joined Los Alamos during the
summer of 1952 and used to MANIAC to solve many statistical problems. A signifi-
cant advance in the use of the Monte Carlo method came out of Nicholas Metropolis
collaboration with Edward Teller. Together they introduced the idea of what is today
known as importance sampling, also referred to as the Metropolis algorithm5.

3. Exotic Options

Can-Do Options and Futures are derivative products that give investors the
advantages of listed derivatives with the flexibility of “over the counter” (OTC)
contracts. Investors can negotiate the terms of an option’s contract, choosing the
type of option, underlying asset as well as the expiry date. Futures on bespoke
baskets of shares and exotic options are very popular.

Two questions come to mind, “what is an exotic option” and, “what is a struc-
tured product?” Simply put, an exotic option is any type of option other than the
standard calls and puts found on major exchanges. We can narrow this definition
down slightly, by stating that exotic options are options for which payoffs at maturity
cannot be replicated by a set of standard options (de Weert, 2008). Further to this,
a structured derivative product is a bespoke instrument that enables an investor to
pursue strategies tailored to his or her market view (Tan, 2010). Such a product
allows an investor more control over the yield-risk tradeoff in his investment.

Exotic options and structured notes have traditionally been traded over-the-counter
(OTC). The JSE was the first exchange in the world to list such products. Since 2007,
the types of exotic listed on the JSE have grown tremendously. This forced Safex
to divide exotic Can-Do options into two categories: vanilla exotics and complex
exotics. Vanilla exotics include the more “standard” exotics, like fixed and floating
strike lookbacks, Barriers, Asians and Binaries - we can throw variance futures into
this mold as well . A complex exotic might be an option where one has a lookback
option, but it has a barrier or Asian feature embedded, or it is a type of spread option
on a basket of shares (meaning correlations play a role).

All JSE listed exotic options are European in nature — this means they can only
be exercised on the expiry date. Most equity exotics have the FTSE/JSE Top 40
Index (ALSI) and FTSE/JSE Shareholders Weighted Top 40 Index (DTOP) indices as
underlying instruments. On the foreign exchange side, the USDZAR is the preferred
underlyer due to its massive liquidity.

If an instrument is liquid, a full MtM process can be run because on-screen traded
prices or bid-ask spreads are available, and can be used at end of each day. However,

5http://library.lanl.gov/cgi-bin/getfile?00326886.pdf
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all exotic Can-Do instruments are very illiquid, and a mark-to-model process is used.
This means models are used in estimating the end of day levels. In this note, we will
describe how these exotic instruments can be evaluated using Monte Carlo simulation.

4. Solving the Generalised Black-Scholes PDE

This section discusses the mathematical background and can be skipped

Option pricing theory due to Fischer Black, Myron Scholes and Robert Merton is
now well established and understood (Kotzé, 2003). Stewart (2012) stated that the
Black-Scholes model is one of his 17 equations that changed the world. He calls it
the “Midas” equation.

In the so-called Black-Scholes world we make, inter alia, the following assumptions

• Stock prices follow a continuous random walk Brownian motion

• The efficient market hypothesis holds

• Investors live in a risk-neutral world

• Delta-hedging is done continuously.

In general, Black & Scholes assumed that the financial market is a system
that is in equilibrium — without outside or exogenous influences, the system
is at rest; everything balances out and supply equals demand. Any distortion
or perturbation is thus quickly handled by the market players and equilibrium
restored

The Brownian motion of asset prices through time is shown in Figure 1.

4.1. The Black-Scholes PDE under Local Volatility

The seminal Black-Scholes-Merton option pricing formula can be obtained ana-
lytically under the assumptions of a constant volatility, constant risk-free rate and
constant dividend yield. As a matter of fact, it can be derived in four ways6:

• Straightforward integration

• Applying the Feynman-Kac theorem

• By transforming the Black Scholes partial differential equation (PDE) into the
heat equation. This is a well-known parabolic PDE formulated by Joseph
Fourier in 1822 (Narasihan, 1999, 2009). This is the original approach adopted
by Black and Scholes

• Using the capital asset pricing model (CAPM).

6http://www.frouah.com/financenotes/BlackScholesFormula.pdf
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Figure 1: Share prices diffuse through time governed by a standardised normal distribution.

It can also be shown that the theory is consistent with an implied volatility skew
(Hull, 2012).

Although satisfactory for European options, the Black-Scholes model comes up
short for more complex options, such as Asian options (whose payoff depends on the
average price of the underlying asset over time), barrier options (whose value depends
on whether a specific boundary value has been attained by the underlying asset before
its maturity) or even common American options.

The theory thus needed to be extended. If we now generalise the standard Black-
Scholes stochastic differential equation (SDE) and assume that volatility is dependent
on the asset’s price and time (it’s not constant anymore) but we still assume it to be
deterministic, we get

dSt = µStdt+ σ(St, t)StdWt. (4.1)

Remember, Wt is a standard Brownian motion and as such dWt = ε
√
dt where ε ∼

N(0, 1), N(0, 1) being a standardised normal distribution.
In Equation (4.1), the function σ(S, t) is called the local volatility function because

it is dependent on both S and t. Note that σ(t) is sometimes referred to as the
instantaneous volatility — it is a function of time only. See Kotzé et al. (2014) for a
full description and explanation of the concept of local volatility. The local volatility
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is the instantaneous volatility for each point in space and time i.e., it is the volatility
that holds near the point when the stock’s value is St at a time t. It is the volatility
that is ‘local’ to the point (St, t) — ‘local’ defined in a similar fashion to the ‘local’ in
‘local extrema’. Further to this definition, this description is similar to the definition
of a ‘field’ in physics. In physics, a ‘field’ is a physical quantity that has a value for
each point in space and time. In this case, local volatility is a scaler field (Boas, 1983;
Reif, 2008). These concepts come from mean field theory (MFT) where the Ising
model is a standard many-body system discussed in solid state physics textbooks
(Harras, 2012; McCauley, 2013; Sornette, 2014).

Please note that the basic Black-Scholes assumptions still hold: the asset price
St evolves log-normally, µ is the expected continuously compounded rate of return
earned by an investor in a short period of time dt — the instantaneous expected
return and Wt is a standard Brownian motion or Wiener process. It is clear that W ,
and consequently its infinitesimal increment dWt, still represents the only source of
uncertainty in the price history of the security.

Black, Scholes and Merton made some assumptions in order to facilitate a better
understanding of the dynamics of the security price St. One of the main assumptions
is that of risk neutrality. In its simplest form, this infers that all risk-free portfolios
can be assumed to earn the same risk-free rate. We can then put µ = rt−dt where rt
is a deterministic interest rate (it can be obtained from a relevant yield curve) and dt
is a deterministic dividend yield. Under these assumptions, the risk-neutral dynamic
of the asset is (Hull, 2012)

dSt = (rt − dt)Stdt+ σ(St, t)StdWt. (4.2)

To move forward and obtain the price of an option, we let a scalar function Vl(S, t)
be the value of a contingent claim like an option at any time t conditional on the price
of the underlying being St at that time. Using Ito’s lemma, equation (4.2) can be
transformed to the generalised Black-Scholes stochastic partial differential equation
(PDE)

∂Vl
∂t

+
1

2
σ2(St, t)S

2
t

∂2Vl
∂S2

t

+ (rt − dt)S
∂Vl
∂St
− rtVl = 0. (4.3)

Equation (4.3) basically describes how the value of a derivative contract, at a con-
tinuum of potential future scenarios, diffuses backwards in time towards today. This
equation is a backward parabolic partial differential equation also known as the back-
ward Kolmogorov equation (Rebonato, 2004; Duffie, 1996). This is just a extention
of Joseph Fourier’s one-dimensional heat conduction equation formulated in 1822
(Narasihan, 1999).

4.2. Discretising the Black-Scholes Equation

Fourier solved his simplistic heat conduction equation analytically by introducing
Fourier transforms. The extended version is not solved that easily. However, we will
understand the SDE in Equation (4.2) much better if we make a change of variables.
Let’s re-write (4.2) in terms of ln(S) and then a simple application of Itô’s lemma
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gives

ST = S0 exp

((
(rT − dT )− 1

2
σ2(ST , T )

)
T + σ(ST , T )ε

√
(T )

)
. (4.4)

Note, ε ∼ N(0, 1), N(0, 1) being a standardised normal distribution. See Appendix
A for the derivation. Equation (4.4) formulates a way to obtain the terminal value
of the stochastic process S. This, together with equations (5.8) (5.9) (see section 5
below) can now be used to obtain the value of our option V (S, t).

Equations (4.2) and (4.4) are both defined for a continuous time variable t. So
the question is how do we sample from the continuous distribution for the variable
ST ? These equations can be discretised by using the Euler scheme. This leads to

S(ti+1) = S(ti) exp

[(
(r(ti)− d(ti))−

σ2(S(ti), ti)

2

)
∆t+ σ(S(ti), ti) εt

√
∆t

]
.

(4.5)
Here, i = 1, 2, . . . , N such that ti = i∆t and T = N∆t. In order to start the
simulation we need a starting asset value S(t0). If we then have the input parameters
like the volatilities, risk-free rates and dividend yields, we can estimate a price for S
at each discretised step i until we reach S(tN) = S(T ). Such a price path is shown in
Figure 2 where we have 25 time steps.

Figure 2: A price path for a security with price R100 at time t = t0, risk-free rate r = 0.05, dividend
yield d = 0.025 (both continuous), volatility of 15% and T = 0.5. Further, N = 25 and then
∆t = 0.02

The Euler scheme can be improved if we include the next order terms of the Itô-
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Taylor expansion of Equation (4.1). This gives (Jäckel, 2002; Glassermann, 2004;
Clark, 2011)

S(ti+1) = S(ti) exp

[(
(r(ti)− d(ti))−

σ2(S(ti), ti)

2

[
ε2t − 1

])
∆t+ σ(S(ti), ti) εt

√
∆t

]
.

(4.6)
εt is sampled from a standardised normal distribution — this is further discussed in
§6. By adding a term where the diffusion is O(∆t) we get convergence of strong order
1. One of the advantages of Milstein over Euler time stepping is improved convergence
when ∆t is infinitesimal. In that case we can take larger time steps and get by with
a smaller number of time steps N .

5. From Black-Scholes to Monte Carlo Simulation

Let’s assume Vl(ST , T ) is the final condition of our contingent claim at expiry T
and, given that the process, S, starts at S0 at initial time t0. The general solution to
the Black-Scholes backward parabolic partial differential equation in Equation (4.3)
is given by the Feyman-Kac theorem stating

Vl(S0, t0) = EQ
[
e
−

∫ T
t0
ruduVl(ST , T )|St0 = S0

]
, (5.7)

where S, t ∈ R+
0 and St is described by the stochastic differential Equation (4.2)

and ru is the instantaneous discount rate applicable for a very short period of time
du (Linetsky, 1998; Duffie, 1996). Note that the expectation is taken under the risk-
neutral probability measure Q where the stochastic term in Equation (4.2) is governed
by Brownian motion or it is a Wiener process. Note that the Feyman-Kac theorem
provides the justification for the practice of evaluating today’s value of an option
(Vl(S0, t0)) as the discounted expectation of its terminal payoff.

Using the mathematical law of expectation, the expectation for a call option in
Equation (5.7) can be written as an integral such that (Duffie, 1996; Wilmott, 2000)

V (S, t) = e−rT (T−t)
∫ ∞
K

max[0, (ST −K)]g(ST )dST (5.8)

where g(ST ) is the probability density function (pdf) of ST and we assume ln(ST ) is
normally distributed with a standard deviation of w. We thus need to integrate over
all possible S-values that is larger than the strike K at expiry. For a put we have

V (S, t) = e−rT (T−t)
∫ K

0

max[0, (K − ST )]g(ST )dST . (5.9)

Remember K,S ∈ R+
0

Using equations (5.8) and (5.9), we show in Appendix A.5 that these equations
can be discretised such that the simplest Monte Carlo method to price an option is
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given by

VMC(S, t) = e−rT (T−t)
1

M

M∑
i=1

max[0, φ(ST −K)] (5.10)

where ST is attained after N time steps that coincide with the expiry time T . We
can use either Equation (4.5) or Equation (4.6) to estimate ST . To obtain the Monte
Carlo option price, we need to obtain M , ST values. This means we simulate ST , M
times to obtain the average option value VMC . Note: N is the number of time steps
and M the number of simulations.

By scrutinising equations (5.10), (4.5) and (4.6) it becomes clear that MC methods
are indeed techniques utilising random numbers and probability to solve problems.
It is evident that such an analysis is based on artificially recreating a chance process,
running it many times and directly observing the results.

Figure 3 shows 5 price paths generated with Equation (4.5), each having 25 time
steps. Here we have a fixed volatility, interest rate and dividend yield (in the limit as
M → ∞, all ST ’s will have a normal distribution as shown in Figure 1). If we have
a call option with a strike price of 100, Equation (5.10) leads to an option value of
R11.02. This is shown in Table 1.

Figure 3: Price paths for a security with price R100 at time t = t0, risk-free rate r = 0.05, dividend
yield d = 0.025 (both continuous), volatility of 0.25 and T = 1.0. Further, N = 25 and then
∆t = 0.04 and M = 5

In the example above we used a fixed volatility of 25%. However, crucial to
obtaining the correct terminal values ST is that the volatilities we use in equations
(4.5) and (4.6) are the volatilities obtained from a local volatility surface. We thus
need to understand what we mean by the time stamp in the local volatility σ(S(ti), ti)
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Time Steps S Path 1 S Path 2 S Path 3 S Path 4 S Path 5
t=0 100.00 100.00 100.00 100.00 100.00
1.0 97.49 98.66 99.55 99.19 100.42
2.0 102.50 96.74 101.50 102.40 96.10
3.0 105.45 103.45 110.48 103.19 92.63
4.0 101.84 95.56 115.39 91.72 101.54
5.0 97.43 88.44 116.87 99.39 95.19
6.0 89.92 89.17 107.82 112.78 90.70
7.0 86.61 87.65 101.33 110.39 96.34
8.0 87.03 87.35 107.89 112.91 106.92
9.0 86.52 76.50 106.55 117.03 114.14
10.0 88.12 74.35 111.81 115.73 118.42
11.0 91.51 79.93 119.28 109.11 121.68
12.0 85.74 71.59 126.84 113.27 123.20
13.0 87.00 65.09 117.05 111.47 122.55
14.0 88.18 61.22 117.10 115.39 128.60
15.0 88.78 62.40 118.89 115.56 125.20
16.0 87.23 61.89 117.24 115.35 113.94
17.0 91.47 58.64 120.21 110.88 110.23
18.0 88.94 57.62 128.98 115.69 113.36
19.0 86.45 55.57 138.58 117.54 118.14
20.0 96.29 53.43 136.41 116.45 118.08
21.0 84.00 54.48 132.53 116.12 126.71
22.0 81.40 52.66 121.86 99.82 133.38
23.0 78.38 52.31 119.51 95.14 134.03
24.0 80.22 49.19 118.52 102.38 134.16
25.0 (ST ) 80.68 48.68 116.72 105.11 136.68
Call Value at T 0.00 0.00 16.72 5.11 36.68
Average Value 11.70
Value Today 11.02

Table 1: Five price paths and the Monte Carlo option price for a vanilla call. The parameters are
given below Figure 3
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in these equations. This shows we first of all need the stock price at each time step,
i.e., S(ti). We have given some examples in Table 1. But, further to this, we also need
the instantaneous volatility at each time step for each stock price. We can obtain
all of this from a three dimensional local volatility surface. We will discuss this in
section 8 below.

6. Random Number Generators (RNG)

Monte Carlo simulation is done by implementing Equation (5.10). However, we
need ST and we use equations (4.5) and (4.6) for that purpose. From these equations it
is evident that we need a random number ε that is one of the inputs. ε ∼ N(0, 1) and
is drawn from a standardised normal distribution. In practice the random number is
sampled from a discrete distribution calculated by a computer. As such we call these
random numbers pseudorandom numbers because they are generated by a computer
algorithm utilising mathematical formulae. They are not true random numbers. True
randomness can only be obtained from natural phenomena like radiocative decay or
atmospheric noise.

Many pseudorandom number generators have been developed over the past few
decades. One of the generators used by many practitioners is the Mersenne Twister7

(Jäckel, 2002). This algorithm has been implemented in many programming lan-
guages like C++ and even VBA8. Another excellent RNG is the Park-Miller algorithm
with Bays-Durham shuffle (Park & Miller, 1988).

Most RNG generate uniform random numbers. This means these numbers are
drawn from a uniform distribution. However, we need normal random numbers. The
Box-Muller transform is widely used (Jäckel, 2002; Glassermann, 2004). The JSE uses
Box-Muller and both the Mersenne twister and the Park-Miller algorithm dependent
on the implementation.

7. Monte Carlo Simulation and Convergence

In general, Monte Carlo methods give us at best a statistical error estimate. A
Monte Carlo calculation usually follows the following steps: carry out the same pro-
cedure many times, take into account all of the individual results, and summarise
them into an overall approximation to the problem in question. The approximation
is usually the average. The numerically exact solution will be approached only as we
iterate the procedure more and more times, eventually converging at infinity (Jäckel,
2002; Glassermann, 2004).

This will be very time consuming so we are not just interested in a method to
converge to the correct answer after an infinite amount of calculation time, but rather
we wish to have a good approximation quickly. Therefore, once we are satisfied that
a particular Monte Carlo method works in the limit, we are naturally interested in
its convergence behaviour, or, more specifically, its convergence speed.

7http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
8http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/VERSIONS/BASIC/basic.html
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Techniques have been developed to reduce the variance of the result and thus to
reduce the number of simulations required for a given accuracy. Such techniques are
called “variance reduction techniques.”

The JSE mostly uses two techniques:

• Antithetic sampling;

• Control variates.

(Jäckel, 2002) and (Glassermann, 2004) give very good overviews of these techniques.

8. Local volatility

Local volatility models are widely used in the finance industry (Engelmann et al.,
2009). Whereas stochastic volatility and jump-diffusion models introduce new risks
into the modeling process, local volatility models stay close to the Black-Scholes
theoretical framework and only introduce more flexibility to the volatility. This is
one of the main reasons of fierce criticism of local volatility models (Ayache et al.,
2004). Thus, it is a mistake to interpret local volatility as a complete representation
of the true stochastic process driving the underlying asset price. Local volatility is
merely a simplification that is practically useful for describing a price process with
non-constant volatility. A local volatility model is a special case of the more general
stochastic volatility models. That is why these models are also known as “restricted
stochastic volatility models”.

8.1. Dupire’s Formula

The local volatility function σ(S, t) is assumed to be deterministic — it is a deter-
ministic function of a stochastic quantity St and time. So there is still just one source
of randomness, ensuring the completeness of the Black-Scholes model is preserved.
Completeness is important, because it guarantees unique prices, thus arbitrage pricing
and hedging (Dupire, 1993).

Dupire (1994) was the first to show algebraically that, given prices of European call
or put options across all strikes and maturities, we may deduce the volatility function
σ(S, t), which produces those prices via the full Black-Scholes equation (Clark, 2011).
Dupire’s insight was that if the spot price follows a risk-neutral random walk and if
no-arbitrage market prices for European vanilla options are available for all strikes and
expiries, then the local volatility σ(S, t) in Equation (4.1) can be extracted analytically
from European option prices (Dupire, 1993). He, unknowingly, applied Gyöngy’s
theorem (Gyöngy, 1986).

Dupire showed that if we have implied or market volatilities, we can calculate the
local volatilities thereof where (Wilmott (1998) and Clark (2011))

σ2
loc(S0, K, τ) =

σ2
imp + 2τσimp

∂σimp
∂τ

+ 2(r − d)Kτσimp
∂σimp
∂K(

1 +Kd1
√
τ
∂σimp
∂K

)2

+K2τσimp

(
∂2σimp
∂K2 − d1

√
τ

(
∂σimp
∂K

)2
) ,

(8.11)
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where

d1 =
ln (S0/K) +

(
(r − d) + σ2

imp/2
)
τ

σimp
√
τ

,

and τ = T − t such that t and S0 are respectively the market date, on which the
volatility smile is observed, and the asset price on that date. Note that Equation
(8.11) gives the variance, i.e., σ2. See Kotzé et al. (2014) for the derivation.

The main problem is that the implied or traded volatilities are only known at
discrete strikes K and expiries T . This is why the parameterisation chosen for the
implied volatility surface is very important. If implied volatilities are used directly
from the market, the derivatives in Equation (8.11) needs to be obtained numerically
using finite difference or other well-known techniques. This can still lead to an unsta-
ble local volatility surface. Furthermore we will have to interpolate and extrapolate
the given data points unto a surface. Since obtaining the local volatility from the
data involves taking derivatives, the extrapolated implied volatility surface cannot be
too uneven. If it is, this unevenness will be exacerbated in the local volatility surface
showing that it is not arbitrage free in these areas.

Kotzé et al. (2014) showed that the JSE uses a functional form for their ALSI
implied volatility surface. This function is quadratic across strike and exponential
across time. This three dimensional function is fitted to traded data. They further
showed that all derivatives in Equation (8.11) can then be obtained analytically and
the ALSI local volatility surface is easy to calculate and obtain. They went further
and discussed the DTOP and USDZAR implied volatility surfaces. There are no
functional forms available and all derivatives in Equation (8.11) needs to be computed
numerically. We expand on this in the next section.

In the foreign exchange market, options are traded on the Delta — effectively a
measure of the moneyness — as opposed to the absolute level of the strike. See
Clark (2011) for the FX version of Equation (8.11)

8.2. Dupire and Monte Carlo Simulation

The JSE uses Dupire’s formula in Equation (8.11) to convert the implied volatil-
ity surfaces for all vanilla options traded on all underlying future contracts to their
respective local volatility surfaces. The local volatility surfaces are used when exotic
options are evaluated. Exotics are mostly traded on the ALSI, DTOP and USDZAR
and some single name futures.

Figures 4 and 5 show the implied and local volatility surfaces for ALSI and US-
DZAR options respectively on 28 May 2014.

From Figure 4 we notice that the implied volatility surface does not have a lot
of curvature — it is skewed but flat. However, we also see from the local volatility
surface that it has more curvature. This shows that the local volatility skew is twice
that of the implied volatility skew. Figure 5, shows the USDZAR implied volatility
surface that has the currency market’s all familiar smile. Here we also show the local
volatility surface with steeper sides.
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Figure 4: ALSI implied and local volatility surfaces on 28 May 2014

Figure 5: USDZAR implied and local volatility surfaces on 28 May 2014

The JSE generates the ALSI implied volatility surface by fitting a three dimen-
sional deterministic surface function to traded data. We summarise the approach
in Appendix B. This means we have a smooth arbitrage-free surface. On the other
hand, the implied volatility surfaces for the DTOP and USDZAR are given in discrete
form only — these are not smooth.

Continuing with our example: in section 5 and Table 1 we tabulated some price
paths. We now want to calculate the Dupire local volatility for each stock price at
each time step. This is the local volatility that should then be used in equations (4.5)
and (4.6) to obtain the price paths as shown in Table 1.

On a practical note: in equations (4.5) and (4.6) we generate a stock price S(ti)
at each time step ti. To apply Equation (8.11) we now say that τ = ti and S(ti) = K.
Why? To obtain the local volatility we step forward in time and at every time step
assume we price an option with an expiry time of T and then τ = T − t0 but in most
cases t0 = 0. Further, Dupire’s equation is given in terms of the strike. It holds for
all strikes because K ∈ R+

0 . We then say that S(ti) is a possible strike at time ti and
we have K = S(ti).

In our example, the price paths were shown for a one year time period. The
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JSE/FTSE Top 40 index was 44,732 on 28 May 2014. The price paths in Table 1
were generated with a fixed volatility of 25%. We thus cannot generate the same price
paths under a local volatility regime. However, to show the difference between a fixed
volatility and local volatility implementation, we now use the same random numbers
as before and we assume that the one year ATM volatility is 25%. So we run this
experiment and generate 5 price paths under the ALSI local volatility surface. The
implied volatility surface is underpinned by the parameters shown in Tables 5 and 6
and the local volatility surface generated by Equation (8.11). The newly generated
price paths are shown in Figure 6. The actual numbers are listed in Table 2 and the
corresponding local volatilities are listed in Table 3.

Figure 6: Price paths for a security with price R100 at time t = t0, risk-free rate r = 0.05, dividend
yield d = 0.025 (both continuous) and T = 1.0. Further, N = 25 and then ∆t = 0.04 and M = 5.
The volatility used is the local volatility for ALSI options on 28 May 2014.

Comparing graphs 6 and 3 and Tables 2 and 1 reveal that the stock prices are not
that much different. This is the way it should be because the local volatility does not
differ that much from the implied volatility. However, even these slight difference,
can lead to vastly different exotic option prices and especially, Greeks.

9. Pricing Barrier Options under Local Volatility

Let’s now look at the price and hedge ratio Delta of a down-and-out put bar-
rier option on the JSE/FTSE Top 40 index. We price this option using Monte Carlo
simulation under a local volatility surface and using the closed-form solutions. Rubin-
stein & Reiner (1991) derived closed-form solutions to all vanilla barrier options in a
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Time Steps Path 1 Path 2 Path 3 Path 4 Path 5
0 100.00 100.00 100.00 100.00 100.00
1.0 97.49 98.66 99.55 99.19 100.42
2.0 102.47 96.72 101.50 102.40 96.11
3.0 105.44 103.41 110.49 103.20 92.60
4.0 101.87 95.54 115.46 91.75 101.45
5.0 97.47 88.40 117.03 99.35 95.11
6.0 89.94 89.05 108.05 112.74 90.60
7.0 86.57 87.46 101.58 110.41 96.17
8.0 86.91 87.08 108.17 112.99 106.70
9.0 86.32 76.20 106.87 117.18 113.95
10.0 87.83 73.91 112.18 115.95 118.29
11.0 91.15 79.29 119.74 109.38 121.63
12.0 85.36 70.91 127.41 113.60 123.24
13.0 86.54 64.32 117.68 111.86 122.68
14.0 87.64 60.31 117.80 115.84 128.82
15.0 88.17 61.26 119.67 116.08 125.53
16.0 86.58 60.55 118.08 115.94 114.31
17.0 90.73 57.18 121.15 111.50 110.65
18.0 88.18 55.97 130.07 116.40 113.84
19.0 85.67 53.78 139.87 118.31 118.70
20.0 95.34 51.50 137.80 117.30 118.71
21.0 83.16 52.30 133.99 117.03 127.47
22.0 80.51 50.34 123.31 100.65 134.27
23.0 77.44 49.80 121.01 95.94 135.04
24.0 79.16 46.63 120.08 103.23 135.28
25.0 79.53 45.94 118.33 106.00 137.92

Table 2: Price paths under a local volatility regime
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τ = ti LV Path 1 LV Path 2 LV Path 3 LV Path 4 LV Path 5
0 24.9996% 24.9996% 24.9996% 24.9996% 24.9996%
0.04 27.4866% 26.2902% 25.4045% 25.7573% 24.5469%
0.08 23.0088% 27.6461% 23.7543% 23.0681% 28.1790%
0.12 21.2633% 22.5733% 18.2763% 22.7096% 30.5823%
0.16 23.6806% 27.9284% 16.3403% 30.7435% 23.9482%
0.20 26.4488% 32.8200% 16.1544% 25.2543% 28.0043%
0.24 31.2864% 31.9153% 20.5232% 18.3454% 30.8294%
0.28 33.3024% 32.6808% 23.9452% 19.6009% 27.0274%
0.32 32.7299% 32.6118% 20.7567% 18.6921% 21.4314%
0.36 32.8310% 39.9575% 21.4424% 17.2989% 18.4947%
0.40 31.6159% 41.1589% 19.3257% 17.9228% 17.1125%
0.44 29.4515% 36.9318% 16.8225% 20.5418% 16.2359%
0.48 32.7295% 42.4271% 14.8280% 19.0348% 15.9505%
0.52 31.8303% 46.6896% 17.7768% 19.7628% 16.2770%
0.56 31.0305% 49.0341% 17.8591% 18.4809% 14.8622%
0.60 30.5979% 47.9364% 17.4077% 18.5037% 15.8216%
0.64 31.3536% 48.0069% 17.9798% 18.6365% 19.1543%
0.68 29.0183% 49.8401% 17.2056% 20.1550% 20.4486%
0.72 30.2556% 50.2336% 15.1812% 18.6495% 19.4400%
0.76 31.4912% 51.2306% 13.5589% 18.1646% 18.0554%
0.80 26.5871% 52.2391% 14.0215% 18.5222% 18.1259%
0.84 32.6223% 51.4452% 14.7868% 18.6588% 16.0669%
0.88 33.9686% 52.2491% 17.0924% 24.2576% 14.8494%
0.92 35.5782% 52.2521% 17.7223% 26.1977% 14.8259%
0.96 34.4757% 53.6275% 18.0146% 23.2429% 14.8868%
1.00 34.1544% 53.6906% 18.5148% 22.2471% 14.5786%

Table 3: The Dupire local volatilities as obtained from the ALSI local volatility surface on 28 May
2014
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Black-Scholes framework. We discuss these in Appendix C and the pricing equations
are given in Equation (C.34).

To explain the differences between the MC and closed-form solutions, we look at
an example of a one month down-and-out put. This example’s input parameters are
shown in Table 4.

Description Input Values

Equity price 44 732.00
Strike 44 732.00
Barrier 40 258.80
Rebate 0.000
Number of discrete observations 146.00
Current date 28-May-14
Maturity date 30-Jun-14
Interest Rate (NACA) 6.00%
Volatility 14.50%
Dividend Yield (NACA) 3.00%
Type of option Down and out put

Table 4: Input parameters for a down-and-out-put option on the JSE/FTSE Top 40 index.

The payoff function for a down-and-out barrier is given by

VDAO(S, t) = e−rT (T−t)
1

M

M∑
j=1

{
max [0, φ (ST −K)] ⇐⇒ S(ti) > H, t ≤ T
R ⇐⇒ S(ti) ≤ H, t ≤ T

Monte Carlo simulation is implemented where we use Equation (5.10). We can further
use either Equation (4.5) or Equation (4.6) to estimate the stock price S(ti) at each
time step ti and ultimately ST . Having calculated the stock price at each time step
ti, makes it quite easy to implement the boundary conditions. At each time step one
needs to check if the stock price S(ti) is above or below the barrier H.

If we want to implement the closed-form solution, we need to understand that we
can do it in two different ways: we first price it using a fixed volatility of 14.5% and
secondly we obtain the volatility from the implied volatility surface.

The price dynamics of this option is shown in Figure 7 where closed-form is ab-
breviated by CF. The barrier is 90% of the spot level and it is short dated. The price
dynamics between the three methods do not differ much and using the slower Monte
Carlo method does not add much value. Figure 7 shows the familiar option profile
for a down-and-out put option — the option vanishes if the stock price breaches the
barrier level.

The dynamics of the hedge ratio Delta is shown in Figure 8. Here is where the
methods differ substantially. Far from the barrier all three methods give the same
Delta. However, interestingly, close to the barrier, the closed-form solution breaks
down. This is a put option and the ∆ should be negative always. The local volatility
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Figure 7: Price dynamics for a down-and-out-put.

model behaves correctly and gives the correct hedge parameter even if the spot is
very close to the barrier.

Figure 8: The ∆-dynamics for a down-and-out-put option.
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10. Conclusion

Monte Carlo methods are powerful and can be used to price exotic options. In
this note we introduced Monte Carlo simulation and explained why it can be used to
price all kinds of derivatives securities. We introduced the local volatility framework
and showed how to incorporate it into a MC simulation. This was done at the hand
of many examples. We concluded by explaining how a barrier option should be priced
in a local volatility world.
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Appendices
A. From Black-Scholes to Discrete Monte Carlo Simulation

A.1. The Feynman-Kac Theorem and Expectation
Fourier solved his simplistic heat conduction equation analytically by introducing

Fourier transforms. The extended version is not solved that easily. However, the
Feynman-Kac theorem can be used to solve it (Rebonato, 2004). This is possible if
Vl(S, t) in Equation (4.3) is twice differentiable and Vl(ST , T ) is the terminal condition.
We also have ST being the terminal asset value on the expiry time T . The Feynman-
Kac theorem establishes a link between parabolic partial differential equations and
stochastic processes or diffusion problems we encounter in finance (Jäckel, 2002). It
offers a method of solving certain PDEs by simulating random paths of a stochastic
process (Klebaner, 2005; Clark, 2011). If we now let Vl(ST , T ) be the final condition of
our contingent claim at expiry T and, given that the process, S, starts at S0 at initial
time t0, the general solution to this backward parabolic partial differential equation
shown in Equation (4.3) is given by

Vl(S0, t0) = EQ
[
e
−

∫ T
t0
ruduVl(ST , T )|St0 = S0

]
, (A.12)

where S, t ∈ R+
0 and St is described by the stochastic differential Equation (4.2)

and ru is the instantaneous discount rate applicable for a very short period of time
du (Linetsky, 1998; Duffie, 1996). Note that the expectation is taken under the risk-
neutral probability measure Q where the stochastic term in Equation (4.2) is governed
by Brownian motion or it is a Wiener process. Note that the Feyman-Kac theorem
provides the justification for the practice of evaluating today’s value of an option
(Vl(S0, t0)) as the discounted expectation of its terminal payoff.

In general, if we assume the volatility σ(St, t) is stochastic, Equation (A.12) cannot
be solved analytically. However, the situation is a little more tractable if we assume
the following: the volatility is a deterministic local volatility σ(St, t) and both the
risk-free interest rate and dividend yield are deterministic functions. Note that the
local volatility σ(St, t) should be defined such that it is locally Lipschitz and that
the Cauchy-Peano local existence theorem9 for ordinary differential equations holds
(Duffie, 1996; Hassani, 1991).

To explain this we define B(t) to be the value of a bank account at time t ≥ 0.
We assume B(0) = 1 and that the bank account evolves according to the following
differential equation

dB(t) = rtB(t)dt, B(0) = 1

where rt is a positive function of time (Brigo & Mercurio, 2001). If we integrate we
get

B(t) = exp

(∫ t

0

rudu

)
.

9Compare the Picard-Lindelöf theorem or Picard’s existence theorem as well
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Remember, ru is the instantaneous rate at which the bank account accrues in a very
short period du. Note that we integrate over [0, t]. Following from this we can define
the stochastic discount factor D(t, T ) between t and T as follows

D(t, T ) =
B(t)

B(T )
= exp

(
−
∫ T

t

rudu

)
. (A.13)

Here, D(t, T ) is the amount at time t that is equivalent to one unit of currency payable
at time T .

If we now substitute (A.13) into (A.12) and we also assume our contingent claim
is a vanilla option with a strike price of K, we have (we drop the subscript 0)

Vl(S, t) = D(t, T )EQ [φ(ST −K)+|St = S
]
. (A.14)

However, if we assume our risk-free rates are given in continuous compounding format,
we have D(t, T ) = exp(−rττ) where τ = T − t and thus

Vl(S, t) = e−rτ τEQ [φ(ST −K)+|St = S
]
. (A.15)

If t = 0 the rate rτ is a zero coupon rate read off from a relevant yield curve. Otherwise
rτ is a relevant forward rate that holds from t to T and obtained from the zero-coupon
yield curve rates for t and T . Here, φ is an indicator function: φ = 1 for a call and
φ = −1 for a put.

A.2. Feynman-Kac in Integral Form

Equation (A.15) is the solution to the local volatility Black-Scholes PDE given in
Equation (4.3). However, due to the expectation, it still seems difficult to solve. We
also stated that we will use Monte Carlo simulation to solve the Black-Scholes PDE.
Monte Carlo simulation is associated with integration. What now?

Remember that the fundamental law of mathematical expectation states: the
expectation of a discrete random variable X is defined as

E(X) =
n∑
j=1

xjf(xj) (A.16)

provided the sum is finite (Arnold, 1990). Here X is a discrete random variable having
the possible values x1, x2, . . . , xn with density function f(xj). We think of E(X) as
the average value of X — e.g., the average profit in a game of chance. A special case
of Equation (A.16) is where all probabilities are equal such that

E(X) =
1

n
(x1 + x2 + . . .+ xn).

This is of course the arithmetic mean. It acts as a representative or average of the
values of X and is often called a a measure of central tendency (Spiegel et al., 2000).

For a continuous random variable X having density function f(x), the expectation
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of X is defined as

E(X) =

∫ ∞
−∞

xf(x)dx (A.17)

where x ∈ R and provided the integral is finite or converges absolutely (Arnold, 1990).
Using the mathematical law of expectation, the expectation for a call option in

Equation (A.15) can be written as an integral such that (Duffie, 1996; Wilmott, 2000)

V (S, t) = e−rT (T−t)
∫ ∞
K

max[0, (ST −K)]g(ST )dST (A.18)

where g(ST ) is the probability density function (pdf) of ST and we assume ln(ST ) is
normally distributed with a standard deviation of w. We thus need to integrate over
all possible S-values that is larger than the strike K at expiry. For a put we have

V (S, t) = e−rT (T−t)
∫ K

0

max[0, (K − ST )]g(ST )dST . (A.19)

Remember K,S ∈ R+
0

Under the assumption of a constant volatility and interest rate, the integral in
Equation (A.18) can be solved analytically leading to the well-known Black-Scholes
option pricing formulae for calls and puts. However, if we just relax the assumptions
of constant volatility and constant interest rate slightly and assume that these two
quantities are deterministic (but not constant), the integral cannot be calculated
analytically anymore. The integral needs to be solved numerically.

The integral can be solved using Monte Carlo simulation. However, in order to
do that, we need to know how ST behaves or what the dynamics of ST is. This is
now quite simple because we know that equations (A.12) and (A.15) are only valid
if the asset price dynamics are described by the stochastic differential equation given
in (4.2).

A.3. Integrating the SDE

BS option pricing: Along the way, it changed the way investors and others
place a value on risk, giving rise to the field of risk management, the increased
marketing of derivatives, and widespread changes in the valuation of corporate
liabilities. The theory “is absolutely crucial to the valuation of anything from a
company to property rights”. Financial economics deals with four main phenom-
ena: time, uncertainty, options and information.

The stochastic differential equation given in Equation (4.2) describes the dynamics
of our stochastic asset price S. However, we understand this SDE much better if we
make a change of variables. Remember, we stated that ln(ST ) is normally distributed
so let’s re-write (4.2) in terms of ln(S). Let’s consider the process Xt = f(St) defined
by f(x) = ln(x) (Clark, 2011). Remember that f ′(x) = 1/x and f ′′(x) = −x−2. A

26



simple application of Itô’s lemma gives

dXt = (rt − dt)dt+ σ(St, t)dWt −
1

2
σ2(St, t)dt. (A.20)

Remember, Wt is a standard Brownian motion and as such dWt = ε
√
dt where

ε ∼ N(0, 1), N(0, 1) being a standardised normal distribution. Following from this,
Equation (A.20) can be integrated to give

XT = X0 +

(
(rT − dT )− 1

2
σ2(ST , T )

)
T + σ(ST , T )ε

√
T . (A.21)

But, Xt = ln(St), thus

ST = S0 exp

((
(rT − dT )− 1

2
σ2(ST , T )

)
T + σ(ST , T )ε

√
(T )

)
. (A.22)

Equation (A.22) formulates a way to obtain the terminal value of the stochastic
process S. This, together with Equation (A.18) can now be used to obtain the value
of our option V (S, t).

A.4. Discretising the SDE

Equations (4.2) and (A.21) are both defined for a continuous time variable t. So
the question is how do we sample from the continuous distribution for the variable
ST ? We do not have a mechanism for doing that. In order to model or simulate
the security prices in practice we need to discretise the time in the process given in
Equation (A.21). In this setting we partition [0, T ] into N equal subintervals of length
∆t and we let (Jäckel, 2002; Hull, 2012)

dt ≈ ∆t

∆t =
T

N
dS ≈ ∆S = St − St−1.

We then simulate S as a transition over each subinterval [t, t+∆t] by using a discrete
first order approximation. We call this an Euler approximation or Euler scheme. Un-
der this first order approximation, Equation (A.21) can be written as follows (Glasser-
mann, 2004)

S(t+ ∆t) = S(t) exp

[(
(r(t)− d(t))− σ2(S(t), t)

2

)
∆t+ σ(S(t), t)εt

√
∆t

]
. (A.23)

The Euler scheme is equivalent to approximating an integral using the left Riemann
sum rule for approximating the value of an integral. Hence the integral is approxi-
mated as the product of the integrand at time t and the integration range dt. The
diffusion term in the Euler scheme is O(

√
∆t) and it has strong convergence of order

1/2. This means we can always fall back on this workhorse of a numerical procedure
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to test any other method (Jäckel, 2002).
Equation (A.23) is called a difference equation meaning the asset price S at time

t + ∆t is dependent on the price of S at a previous time t. Note, we need the price
at a time T ; T ≥ t. ST is obtained by incrementally stepping through time until we
get to the N -th subinterval. We can explain this more clearly if we change subscripts
in (A.23) to give

S(ti+1) = S(ti) exp

[(
(r(ti)− d(ti))−

σ2(S(ti), ti)

2

)
∆t+ σ(S(ti), ti) εt

√
∆t

]
.

(A.24)
Here, i = 1, 2, . . . , N such that ti = i∆t and T = N∆t. In order to start the
simulation we need a starting asset value S(t0). If we then have the input parameters
like the volatilities, risk-free rates and dividend yields, we can estimate a price for S
at each discretised step i until we reach S(tN) = S(T ).

The Euler scheme can be improved if we include the next order terms of the Itô-
Taylor expansion of Equation (4.1). This gives (Jäckel, 2002; Glassermann, 2004;
Clark, 2011)

S(ti+1) = S(ti) exp

[(
(r(ti)− d(ti))−

σ2(S(ti), ti)

2

[
ε2t − 1

])
∆t+ σ(S(ti), ti) εt

√
∆t

]
.

(A.25)
By adding a term where the diffusion is O(∆t) we get convergence of strong order 1.
One of the advantages of Milstein over Euler time stepping is improved convergence
when ∆t is infinitesimal. In that case we can take larger time steps and get by with
a smaller number of time steps N .

A.5. Now, Monte Carlo Simulation

In section A.2 we asked the question of how one can use Monte Carlo simulation
in solving a PDE. We then explained that the solution to the Black-Scholes Equation
(4.1) can be written in integral form as shown in Equation (A.15). Integrals can easily
be evaluated by Monte Carlo simulation (Robert & Casella, 2004). The discretised
version was given in Equation (A.16). If we now discretise equations (A.18) and
(A.19) we have (Duffie, 1996; Glassermann, 2004; Jäckel, 2002)

VMC(S, t) = e−rT (T−t)
1

M

M∑
i=1

max[0, φ(ST −K)] (A.26)

where ST is attained after N time steps that coincide with the expiry time T . We can
use either Equation (A.24) or Equation (A.25) to estimate ST . To obtain the Monte
Carlo option price, we need to obtain M , ST values. This means we simulate ST , M
times to obtain the average option value VMC . Equation (A.26) is the simplest Monte
Carlo approximation of the integral in equations (A.18) and (A.19). Note: N is the
number of time steps and M the number of simulations.
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B. ALSI Deterministic Volatility Function

Let’s quickly summarise the deterministic linear but quadratic functional form for
the ALSI implied volatility surface. The 3 dimensional market volatility surface is
defined through the following function

σimp(S,K, t) = σATM(t) +
θ1
tλ1

(
K

S
− 1

)
+
θ2
tλ2

((
K

S

)2

− 1

)
. (B.27)

Safex obtains the ATM volatilities from the market meaning σATM(t) is a constant
for every t. All the other parameters, θ1, θ2, λ1 and λ2 are obtained by optimising
Equation (B.27) to the market traded data.

Safex publishes two other parameters: θA and λA. These parameters are the
at-the-money parameters and give the theoretical ATM term structure of volatility.
They are obtained by fitting

σATMmodel(t) =
θA
tλA
' σATMMtM (t) (B.28)

to the market (or mark-to-market (MtM)) term structure of ATM volatilities σATMMtM (t)
(see Kotzé & Joseph (2009)).

We need to mention a practical implementation point here. The term structure
of ATM volatilities as obtained from the model in Equation (B.28) will not coincide
with all the traded or mark-to-market ATM volatilities due to the numerical fitting
procedure. We must, however, ensure that if we price an option expiring on a particu-
lar date, that σATM(t) in Equation (B.27) equates the market ATM volatility for that
date. As an example, if we price a 9 month option (T = 0.75) and we have the 9 month
mark-to-market ATM volatility σATMMtM (0.75), we need to ensure that σATM(0.75)) in
Equation (B.27) is equal to this volatility. This is achieved by floating σATMmodel(t) up
or down by a constant amount such that σATM(0.75) = σATMMtM (0.75) = σATMmodel(0.75).
This will in general have the effect that σATM(t) is not equal to the mark-to-market
volatilities for t 6= 0.75.

The whole volatility surface is now described by a functional form given in Equa-
tion (B.27). The derivatives in Dupire’s local volatility function in Equation (8.11)
can be obtained analytically such that we have

∂σimp(S,K, τ)

∂K
=

1

S

θ1
τλ1

+ 2
K

S2

θ2
τλ2

∂2σimp(S,K, τ)

∂K2
= 2

1

S2

θ2
τλ2

(B.29)

∂σimp(S,K, τ)

∂τ
= −λ1θ1τ−(λ1+1)

(
K

S
− 1

)
− λ2θ2τ−(λ2+1)

((
K

S

)2

− 1

)
.

Using Equations (B.29) will lead to a smooth Dupire local volatility surface for
σloc(Sτ , τ)) in Equation (8.11). Further, if the implied volatility surface in Equation
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(B.27) is arbitrage-free, the corresponding Dupire local volatility surface should be
arbitrage-free as well.

Let’s look at a practical example. In Table 5 we show the parameter values, θi
and λi, (i = 1, 2, 3, ATM) as published by Safex on 28 May 2014. Also shown are
the values for θi/t

λi , i = 0, 1, 2, 3. Table 6 lists σATMimp , the model ATM volatilities
and official Safex ATM volatilities for all expiry dates. In Figure 4 we show the Alsi
implied and corresponding local volatility surfaces.

Curvature
Rho(θ1) VolVol (θ2) Level (θ0) Atm (θATM)

In Months -0.8488985 0.1945430 0.9139862 0.1350075
In Years -0.4337514 0.1069264 0.4753064 0.1595808

Decay
Rho (λ1) VolVol (λ2) Level (λ0) Atm (λATM)
0.2702186 0.2408592 0.2631310 -0.0672942

Date T θ1/t
λ1 θ2/t

λ2 θ0/t
λ1

19-06-2014 0.06027397 -92.655786% 21.033029% 99.531201%
18-09-2014 0.30958904 -59.544292% 14.181881% 64.708854%
18-12-2014 0.55890411 -50.759237% 12.301016% 55.393271%
19-03-2015 0.80821918 -45.943944% 11.255306% 50.269616%
18-06-2015 1.05753425 -42.724414% 10.549535% 46.836131%
17-09-2015 1.30684932 -40.349172% 10.025150% 44.298712%
15-12-2016 2.55342466 -33.668883% 8.531503% 37.140432%
21-12-2017 3.56986301 -30.754183% 7.869980% 34.005870%

Table 5: Optimised parameters for the Alsi deterministic implied volatility function on 28 May 2014.

Expiry Date Expiry Time Model ATM Safex ATM
T σATMmodel(t) σATMMtM (t)

19-06-2014 0.06027397 13.209622% 14.25
18-09-2014 0.30958904 14.747329% 14.00
18-12-2014 0.55890411 15.345386% 14.50
19-03-2015 0.80821918 15.731053% 15.00
18-06-2015 1.05753425 16.018262% 15.75
17-09-2015 1.30684932 16.248072% 16.75
15-12-2016 2.55342466 16.997206% 18.50
21-12-2017 3.56986301 17.384842% 21.00

Table 6: Model and official Safex ATM volatilities on 28 May 2014.
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C. Closed-Form Valuation of Single Barrier Options

Barrier options are standard calls and put except that they either disappear (the
option is knocked out) or appear (the option is knocked in) if the underlying asset
price breach a predetermined level (the barrier) (Haug, 2007). Barrier options are
thus conditional options, dependent on whether the barriers have been crossed within
the lives of the options. These options are also part of a class of options called
path-dependent options10.

Single barrier options are probably the oldest of all exotic options and have been
traded sporadically in the US market since 1967 (Zhang, 1998). These options were
developed to fill certain needs of hedge fund managers. Barrier options provided
hedge funds with two features they could not obtain otherwise: the first is that most
“down-and-out” options were written on more volatile stocks and these options are
significantly cheaper than the corresponding vanilla options. The second feature is
the increased convenience during a time when the trading volume of stock options
was rather low. In other words, barrier options were created to provide risk managers
with cheaper means to hedge their exposures without paying for price ranges that
they believe unlikely to occur. Barrier options are also used by investors to gain
exposure to (or enhance returns from) future market scenarios more complex than
the simple bullish or bearish expectations embodied in standard options. The features
just mentioned have helped to make barrier options the most popular path-dependent
options being traded world wide.

We define two types of barriers: a barrier above the current asset price is an ‘up
barrier’ ; if it is ever crossed it will be from below. A barrier below the current asset
price is called a ‘down barrier’ ; if it is ever crossed it will be from above. Barrier
options can also be divided into two classes: in options and out options.

C.1. Defining Single Barrier Payoffs

An in barrier (or knock-in option) will pay off only if the asset price finishes in-
the-money and if the barrier is breached sometime before expiration. Every knock-in
option starts inactive (it does not yet exist) and will stay inactive if the barrier is
never crossed – in this situation the option expires worthless11. When the asset price
crosses the barrier, the in barrier option is knocked in and becomes a standard vanilla
option of the same type (call or put) with the payoff the same as a standard option.

An out barrier (or knock-out option) will pay out only if the asset price finishes
in-the-money and the barrier is never breached before expiration – the payoff is the
same as a standard option. Every knock-out option starts out as a standard vanilla
option (call or put). Its behaviour is exactly the same as that of a vanilla option as
long as the asset price never crosses the barrier. If the asset price crosses the barrier,

10A path-dependent option is an option whose payoff depends on the history of the underlying
asset price. Other path-dependent options are Asian options, look-back options, ladder options and
chooser or shout options.

11This means an investor buys an option that is worthless. This option will only be of any value
when the barrier is crossed and the payoff is then the same as that of an ordinary vanilla option.
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the option is knocked out and it expires worthless (the option becomes null and void
and there is no chance of recovery).

There are eight types of vanilla barrier options:

1. up-and-out call and put,

2. up-and-in call and put,

3. down-and-out call and put,

4. down-and-in call and put.

Barrier options can also have cash rebates associated with them. This is a conso-
lation prize paid to the holder of the option when an out barrier is knocked out or
when an in barrier is never knocked in. The rebate can be nothing or it could be
some fraction of the premium. Rebates are usually paid immediately when an option
is knocked out, however, payments can be deferred to the maturity of the option.

The payoff functions for all barrier options are

V (down-and-out) =

{
max [0, φ (S −K)] if S > H before expiry
R if S ≤ H before expiry

(C.30)

V (up-and-out) =

{
max [0, φ (S −K)] if S < H before expiry
R if S ≥ H before expiry

(C.31)

V (down-and-in) =

{
max [0, φ (S −K)] if S ≤ H before expiry
R if S > H before expiry

(C.32)

V (up-and-in) =

{
max [0, φ (S −K)] if S ≥ H before expiry
R if S < H before expiry

.(C.33)

Here φ is the binary operator

φ =

{
1 for a call
−1 for a put

.

Equation (C.30) shows that the payoff for a down-and-out barrier option is exactly the
same as that for a vanilla option. However, we impose one extra boundary condition
onto this payoff. That is that the option vanishes if the underlying’s price breaches
the barrier level H any time before expiry and the payout is the consolation prize of
the rebate R. This one extra condition ensures that the option is path dependent and
due to the skew, more difficult to price. It can however be done easily with a local
volatility Monte Carlo scheme.

C.2. Closed-Form Solutions

Merton (1973) was first at deriving a closed-form solution for a barrier option
where he showed that a European barrier option can be valued in a Black-Scholes
environment — this means we have a fixed volatility and interest rate and dividend
yield. Thereafter, Rubinstein & Reiner (1991) generalised barrier option-pricing the-
ory. Rich (1994) gives an excellent summary of barrier options. Broadie et al. (1997)
gives a simple modification to adjust the prices if the barrier is monitored discretely
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in time e.g., daily or weekly. With a rebate, continuous dividend yield and continuous
monitoring of the barrier, the following equations are obtained (Haug, 2007):

A = φS e−dτ
(
H
S

)2λ
N (ηy)− φK e−rτ

(
H
S

)2λ−2
N (ηy − ησ

√
τ)

B = R e−rτ
[
N (ηx1 − ησ

√
τ)−

(
H
S

)2λ−2
N (ηy1 − ησ

√
τ)
]

C = φS e−dτN (φx)− φK e−rτN (φx− φσ
√
ι)

D = φS e−dτN (φx1)− φK e−rτN (φx1 − φσ
√
τ)

E = φS e−dτ
(
H
S

)2λ
N (ηy1)− φK e−rτ

(
H
S

)2λ−2
N (ηy1 − ησ

√
τ)

F = R
[(

H
S

)a+b
N (ηz) +

(
H
S

)a−b
N (ηz − 2ηbσ

√
τ)
]


(C.34)

where S is the spot market price, K is the strike price, H is the barrier (in the same
units as S and K), R is the rebate (in currency units), τ is the annualised time
till expiration, r is the risk-free short term interest rate in continuous format, d is
the dividend yield in continuous format, σ is the volatility and φ and η are binary
variables set out in Table C.2.

All the other variables are defined as follows (with ln the natural logarithm)

x = 1
σ
√
τ

{
ln
(
S
K

)
+
(
r − d+ σ2

2

)
τ
}

x1 = 1
σ
√
τ

{
ln
(
S
H

)
+
(
r − d+ σ2

2

)
τ
}

y = 1
σ
√
τ

{
ln
(
H2

SK

)
+
(
r − d+ σ2

2

)
τ
}

y1 = 1
σ
√
τ

{
ln
(
H
S

)
+
(
r − d+ σ2

2

)
τ
}

z = 1
σ
√
τ

{
ln
(
H
S

)
+ bσ2τ

}
λ = 1 + µ

σ2

a = µ
σ2

b = 1
σ2

[√
µ2 + 2rσ2

]
µ = r − d− σ2

2
.



(C.35)

N(•) is the cumulative of the normal distribution function (Haug, 2007; Hull, 2012).
The valuation formulas for the eight barrier options can be written as combinations

of the quantities A to F given in Equation (C.34). The value of each barrier is also
dependent on whether the barrier H is above or below the strike price K. All barriers
are priced in using equations (C.34) and (C.35) and combining them as shown in Table
C.2.

The abbreviations used are: DICK<H is short for “down and in call barrier option”
where the strike value Kis less than the barrier value H. If the payment of the rebate
is deferred to maturity for the knock-out options, we put F = B in the equations
above.
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Call Put
Down and In Barriers
φ = η = 1
DICK≥H = A+B
DICK<H = C −D + E +B

φ = −1, η = 1
DIPK≥H = D − A+ E +B
DIPK<H = C +B

Up and In Barriers
φ = 1, η = −1
UICK≥H = C +B
UICK<H = D − A+ E +B

φ = −1, η = −1
UIPK≥H = C −D + E +B
UIPK<H = A+B

Down and Out Barriers
φ = η = 1
DOCK≥H = C − A+ F
DOCK<H = D − E + F

φ = −1, η = 1
DOPK≥H = C −D + A− E + F
DOPK<H = F

Up and Out Barriers
φ = 1, η = −1
UOCK≥H = F
UOCK<H = C −D + A− E + F

φ = −1, η = −1
UOPK≥H = D − E + F
UOPK<H = C − A+ F

Table 7: Pricing Formulas for European barrier options. The variables are defined in Equation
(C.34)
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